

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PERIODIC-TEST-1 2025-26

CHEMISTRY (043)

Class: XII

Date: 30/06/2025

Admission No.:

Duration: 1 Hr

Max. Marks: 25

Roll No.:

General Instructions:

- (1) There are 13 questions in all. All questions are compulsory.
- (2) This question paper has three sections: Section A, Section B and Section C.
- (3) All the sections are compulsory.
- (4) Section A contains five questions of 1 mark each, Section B contains four questions of two marks each, Section C contains four questions of three marks each.
- (5) There is no overall choice. Use of calculators is not allowed.

SECTION-A

1. In comparison to 1 M solution of glucose, the boiling point of 1 M NaCl solution is	1
(a) same (b) twice (c) three times (d) six times.	
2. The molarity of 900 gram of water is	1
 (a) 50 M (b) 55.50M (c) 5 M (d) cannot be calculated. 3. Four Faraday of electricity are passed through a solution of ZnSO₄. The mass of zinc deposited at the cathode is (atomic mass of Cu = 65 amu). 	1
(a) 22 gram (b) 130 gram (c) 6.5 gram (d) 65 gram.	
4. In lead storage battery, the electrolyteH ₂ SO ₄	1
(a) 38% (b) 48% (c) 32% (d) 80%	
5. The unit of rate of reaction	1
(a) \sec^{-1} (b) mol lit ⁻¹ \sec^{-1} (c) lit mol ⁻¹ \sec^{-1} (d) mol ² lit sec.	

SECTION - B

6. Define the following:	2
(i) Order of a reaction	
 (ii) molecularity of a reaction 7. How much charge is required for the following reductions: (a) 1 mol of Al³⁺ to Al? (b) 1 mol of Cu²⁺ to Cu? 	2
 8. Given that the standard electrode potentials (E°) of metals are: K⁺/K = -2.93 V, Ag⁺/Ag = 0.80 V, Cu²⁺/Cu = 0.34 V, Mg²⁺/Mg = -2.37 V, Cr³⁺/Cr = -0.74 V, Fe²⁺/Fe = -0.44 V. Arrange these metals in increasing order of their reducing power. 9. Differentiate between molality and molarity of a solution. What is the effect of a change in the temperature of a solution on its molality and molarity? 	2
SECTION C	
10. What is meant by positive and negative deviation from Raoult's law? Explain with a graph. 11. (a) For a reaction $A + B \rightarrow P$, the rate law is given by Rate = $k[A][B]^2$	3
(i) How is the rate of reaction affected if the concentration of B is doubled?(b) A first-order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.	3
12. (a) Draw the graph between Concentration and time for a zero-order reaction.(b) Explain the Rate Law expression.	3
13. Calculate the emf of the cell $Zn/Zn^{2+}(0.1M)$ II $Cd^{2+}(0.01M)/Cd$ at $298K$	
$E^{0}_{Zn}^{2+}_{/Zn} = -0.76 \text{ V}, E^{0}_{Cd}^{2+}_{/Cd} = -0.40 \text{ V}$	3
ALL THE BEST	